Motivation

The motivation of this Working Group is to assess and develop existing and potential dosemeters and dosimetric techniques in radiotherapy and, in particular, to assess non-target patient doses and the related risks of secondary malignancy, with the emphasis on a thorough evaluation of dosimetry methods for the measurement of doses remote from the target volume in phantom experiments.

This work lays the foundations for the determination of the complete dose specification for patients undergoing radiotherapy, i.e. the total dose to all organs from all sources of radiation, including the imaging procedures necessary for planning and treatment verification. This latter stage is a collaboration with WG12 (Dosimetry in Medical Imaging). The total dose to all critical organs is required for input into epidemiological studies as well as providing robust dosimetric data for the long term studies of radiation effects.

Because of improved treatment techniques, it is recognized that survival rates in radiotherapy are increasing, but secondary cancers (and other long term conditions) might also increase in the future. These occurrences are amplified by the early detection of disease in younger patients. Many of these patients are cured of the primary disease and have long life-expectancies, which increase their chances of developing secondary malignancies. The topic is central to EURADOS activities since our organization has access to experts and developers of the required physical dosimetry techniques and risk prediction models. Whilst common and developing dosimetric techniques are easily identified (eg, ion chambers, TLDs, OSL, RPL, bubble detectors) traceability and consistency need to be established through intercomparison exercises between laboratories and appropriate reference facilities. An ongoing objective of WG9 is to identify new and emerging dosimetric techniques and materials and assess their potential use in radiotherapy dosimetry (e.g. optical fibre and gel dosemeters).

The increasing diversity of radiotherapy treatments following the introduction of techniques such as intensity-modulated, image guided and image adaptive radiotherapy (IMRT, IGRT, IART) means that radiotherapy clinics will need to simulate their treatments in order to estimate and minimize doses to healthy tissues and organs. This is likely to be accomplished by a combination of calculation (via treatment planning algorithms and analytical out-of-field models) and measurement in anthropomorphic phantoms. The work of this Group is designed to generate robust datasets of out-of-field dose measurements which can be used for the development, validation and application of dose algorithms and analytical models.

The Group contributes to the recent rapid development of proton radiotherapy facilities by studying, developing and harmonising dosimetric techniques for proton and neutron dosimetry in such facilities, including experimental and computational studies of phantom and ambient mixed radiation fields. The Group also promotes the development of dosimetric techniques for mailed dosimetry audits of proton therapy beams. A Sub-Group (SG9.2) on Hadron Radiotherapy Dosimetry has been formed to address this field. An additional Sub-Group (SG9.1) on
Computational Methods in Medical Physics provides complementary Monte Carlo studies in support of the experimental programmes.

Aims

The specific aims are:

Scientific Aims

- To select and review dosemeters suitable for radiotherapy photon, proton and neutron dosimetry in phantoms
- To identify a list of clinical situations and treatment protocols which lead to healthy-tissue doses of concern.
- To evaluate the characteristics of dosemeters for out-of-field measurements and in-vivo dosimetry.
- To perform joint clinical measurements with partners at selected hospitals. The determination of out-of-field doses in paediatric radiotherapy treatments, using various photon and proton radiotherapy techniques, is a major clinical focus of the Group.
- To develop appropriate phantoms for out-of-field dosimetry.
- To simulate aspects of the experimental campaigns using Monte Carlo techniques, in order to assess and further analyze the experimental results.
- To investigate and develop combined techniques for out-of-field dosimetry (e.g. combinations of measured and calculated doses, using experimental data to test and verify analytical dose models).
- Starting from the measured organ doses, to select the models that will be used to estimate the risk of developing second cancers.

Organisational Aims

- To seek funding opportunities
- To increase visibility and disseminate results at international conferences and in peer reviewed journals

Actions

Completed

- Selection of clinical cases for study
- Establishment of protocols for measurement
- Measurement protocol campaigns
- Calibration of dosemeters & measurement of out-of-field data
- Measurements of out-of-field scatter and leakage
- Simulated clinical dosimetry measurements using a BOMAB phantom
- Workshop “Dosimetry for second cancer risk estimation in radiotherapy” at AM2012, Vienna
- Dissemination of completed work at international conferences
- Clinical simulations using paediatric anthropomorphic phantoms
In Progress

- Proton radiotherapy – measurements using water tank and anthropomorphic phantoms
- Paediatric radiotherapy dose and risk estimates
- Clinical simulation of brachytherapy using anthropomorphic phantom
- Joint WG9 / 12 action on experimental determination of complete dose specifications in radiotherapy
- EURADOS Report on dosimetry for second cancer risk estimation
- System for mailed dosimetry audits of proton therapy radiotherapy beams

Planned

- Development of Monte Carlo simulations of radiation fields in the vicinity of treatment machines
- Analysis of results and review of risk models and establishment of protocol for risk assessment
- Analysis of potential for dose/risk reduction
- In-vivo dosimetry (patient & remote measurements, simulations)
- Small field dosimetry
- Collaboration with TP system manufacturers

Members

Chairperson

- Roger Harrison
 Newcastle, UK (University of Newcastle upon Tyne & formerly Newcastle Freeman Hospital)

 Email: roger.m.harrison@gmail.com

Secretary

- Saveta Miljanić
 Ruđer Bošković Institute, Zagreb

 Email: saveta@irb.hr

Full members

- Pawel Olko
 Instytut Fizyki Jadrowej, Krakow
- Carles Domingo
 Universitat Autònoma de Barcelona
- Hrvoje Hršak
 University Hospital Centre Zagreb
- Marco Silari
 CERN, Geneva
- Liliana Stolarczyk
 Instytut Fizyki Jadrowej, Krakow
- Angela di Fulvio
 Università di Pisa, Pisa & University of Michigan
- Jad Farah
 Institut de Radioprotection et de Surete Nucléaire (IRSN), Paris
- João Santos
 Serviço de Física Médica, Instituto Português de Oncologia do Porto
 Francisco Gentil
- Sebastian Trinkl
 Helmholtz-Zentrum München, Institut für Strahlenschutz
- Marijke De Saint-Hubert
 Centre d’Etudes de l’Energie Nucléaire – Studiecentrum voor Kernenergie, (SCK-CEN), Mol

Status: June 2017
Corresponding members

- Aaste Soevik, Norwegian Radiation Protection Authorities
- Argiro Bozari, Greek Atomic Energy Commission, Athens
- Cinzia De Angelis, Istituto Superiore di Sanità, Rome
- Damian Kabat, Medical Physics Department, Centre of Oncology, Kraków
- Eleftheria Carinou, Greek Atomic Energy Commission, Athens
- Emiliano D’Agostino, SCK-CEN, Mol
- Ewa Nalichowska, Instytut Fizyki Jadrowej, Krakow
- Filip Vanhavere, SCK-CEN, Mol
- Frank Becker, Forschungszentrum Karlsruhe
- Francesco d’Errico, Università di Pisa, Pisa
- Hannu Jarvinen, STUK, Helsinki
- Immalucalada Martinez, Universitat Autònoma de Barcelona
- Irena Gudowska, Karolinska Institutet, Solna
- Jean-Marc Bordy, Commissariat à l’Énergie Atomique, Paris
- Jan Lillhok, Swedish Radiation Safety Authority, Stockholm
- Jenny Kunst, Instytut Fizyki Jadrowej, Krakow
- Joana Lencart, Serviço de Fisica Médica, Instituto Português de Oncologia do Porto
- Katarzyna Tymińska, National Centre for Nuclear Research, Swierk, Poland
- Lara Struelens, SCK-CEN, Mol
- Magdalena Klodowska, Instytut Fizyki Jadrowej, Kraków
- Maite Romero-Exposito, Universitat Autònoma de Barcelona
- Maiwenn Le Roy, Commissariat à l’Énergie Atomique, Paris
- Małgorzata Liszka, Instytut Fizyki Jadrowej, Kraków
- Marie Davidková, Nuclear Physics Institute CAS, Prague
- Marija Majer, Ruder Bošković Institute, Zagreb
- Martin Dommert, Physikalisch-Technische Bundesanstalt, Braunschweig
- Merce Ginjaume, Universitat Politècnica de Catalunya, Barcelona
- Michal Gryzinski, National Centre for Nuclear Research, Swierk
- Natalia Golnik, Institute of Atomic Energy, Swierk, Poland
- Natalia Mojżeszek, Instytut Fizyki Jadrowej, Krakow
- Nicolas Arbor, IPHC – CNRS, Strasbourg
- Oliver Jaekel, University Hospital, Heidelberg
- Ondrej Ploc, Nuclear Physics Institute Prague
- Pedro Vaz, Instituto Tecnológico e Nuclear, Lisbon
- Peter Beck, Austrian Research Centers GmbH – ARC, Seibersdorf
- Stefano Agosteo, Politecnico di Milano
- Sylwia Pysklak, Radiotherapy Department, University Children’s Hospital of Kraków
- Teemu Siiskonen, STUK, Helsinki
- Uwe Schneider, Triemli Hospital, Zürich
- Veronique Lacoste, IRSN, Paris
- Vladimir Mares, Helmholtz-Zentrum München
- Wayne Newhauser, Mary Bird Perkins Cancer Center & Louisiana State University, USA
- Wolfgang Sauerwein, Universität Duisburg-Essen

Status: June 2017
Xavier Ortega Universitat Politecnica de Catalunya, Barcelona
Željka Knežević Ruđer Bošković Institute, Zagreb

Associated contributors

- Igor Bessieres Commissariat à l'Énergie Atomique, Paris
- Luigi Tana Università di Pisa, Pisa
- Marc de San-Pedro Universitat Autònoma de Barcelona

Additional information

WG09_AM2017_Progress Report