Christian.Hranitzky@seibersdorf-laboratories.at

2240 IRRADIATED PERSONAL DOSEMETERS FOR THE EURADOS IC2014 INTERCOMPARISON AT SEIBERSDORF

IM2015 Conference, Bruges/Belgium, April 20-24 2015

Seibersdorf 30 km to the south of Vienna

Testing and Calibration Laboratory Confirmation of Accreditation

bmwiw

Measurement hall (320 kV X ray unit, ¹³⁷Cs/⁶⁰Co reference facility)

Testing and Calibration Laboratory Confirmation of Accreditation

bmwfw

Dis national Accessible unpres le / Tax Animal Accessibility Sour ACCESSIVE ALL TRANS ALL TRANS Sector private line of a contrast me accessionen of Private line / Testing Laboratory Sector solution Labor Contrat of 2144 Sector 1241 Description accession 210 (2004) 0312

Averable association of the second state of th

(1) (1) (news) and intervalues (regardly - and to oblight set - a failth of entranges) and the association stage and thereef theory planter (stage of the set (set of the set of the set

0583.2015

Cature / Cate

the second detail of a second s

A statement of the statement of the statement of the

2 an inc. by Honore Brance Later Association of Scatter / Neur Association (Scotter)

1.234.30

Measurement bunker (⁶⁰Co Picker teletherapy unit)

ISO standards Irradiation conditions

ISO 29661 Reference point on phantom

ISO 29661 Phantom rotation

Reference orientation Reference point

 Photos were taken according to stated reference orientation

front side

upright (wearing) position

✤ Reference points were identified

60° irradiation setup

Philips MG320 x-ray facility, 20° tungsten-anode, 2.5 mm Be inherent filtration Pneumatic shutter Filter wheel with additional filters Monitor chamber at 325 mm, BEV calibrated for 2500 mm distance

9 irradiation setups

Overview setup 1 to 5

2 gamma radiation qualities (¹³⁷Cs and ⁶⁰Co nuclide sources ISO 4037-1)

Setup number	1	2	3	4	5
Radiation quality	S-Cs	S-Cs	S-Co	S-Co	S-Co
Average photon energy	0.66 MeV	0.66 MeV	1.25 MeV	1.25 MeV	1.25 MeV
Angle of radiation incidence	0°	0°	0°	0°	0°
Source detector distance	2 m	2 m	4.5 m	2 m	2 m
Field size	52 cm diam.	52 cm diam.	$90 \times 90 \text{ cm}^2$	40 x 40 cm ²	40 x 40 cm ²
Max. detector size on phantom	15 x 15 cm ²	$15 \text{ x} 15 \text{ cm}^2$	15 x 15 cm ²	$15 \times 15 \text{ cm}^2$	$15 ext{ x } 15 ext{ cm}^2$
Applied dose equivalent range	0.9 - 1.1 mSv	7.1 - 9.2 mSv	7.9 - 10 mSv	71 - 92 mSv	413 - 499 mSv
Uncertainty (k=2)	5 %	5 %	5 %	6%	6 %

testing calibration

testing high dose linearity

9 irradiation setups

Overview setup 6 to 9 3 X-ray radiation qualities (ISO 4037-1 and IEC 61267)

testing low energy response

Setup number	6	7	8	9
Radiation quality	RQR 7	W-80	W-80	W-150
Average photon energy	47 keV	57 keV	57 keV	104 keV
Angle of radiation incidence	0°	0°	60°	0°
Source detector distance	2.5 m	2.5 m	2.5 m	2.5 m
Field size	43 cm diam.	43 cm diam.	43 cm diam.	43 cm diam.
Max. detector size on phantom	15 x 15 cm ²	$15 \text{ x} 15 \text{ cm}^2$	5 x 15 cm ²	$15 \text{ x} 15 \text{ cm}^2$
Applied dose equivalent range	7.8 - 9.9 mSv	7.6 - 9.7 mSv	7.3 - 9.4 mSv	7.4 - 9.5 mSv
Uncertainty (k=2)	6 %	6 %	6 %	6 %

testing angular response at low energies

radiation quality DV-90 (IEC RQR 7) 3 mm Al additional filtration 1. HVL 3.4 mm Al

Setup number	6
Radiation quality	RQR 7
Average photon energy	47 keV
Angle of radiation incidence	0°
Source detector distance	2.5 m
Fold size	43 cm diam.
Max. detector size on phantom	15 x 15 cm ²
Applied dose equivalent range	7.8 - 9.9 mSv
Uncertainty (k=2)	6 %

SEIBERSDORF

FS

RA

radiation quality DV-90 (IEC RQR 7) 3 mm Al additional filtration 1. HVL 3.4 mm Al

Setup number	6
Radiation quality	RQR 7
Average photon energy	47 keV
Angle of radiation incidence	00
Source detector distance	2.5 m
Feld size	43 cm diam.
Max. detector size on phantom	$15 ext{ x } 15 ext{ cm}^2$
Applied dose equivalent range	7.8 - 9.9 mSv
Uncertainty (k=2)	6 %

radiation quality DV-90 (IEC RQR 7)

Setup number	6
Radiation quality	RQR 7
Average photon energy	47 keV
Angle of radiation incidence	0°
Source detector distance	2.5 m
Field size	43 cm diam.
Max. detector size on phantom	$15 \times 15 \text{ cm}^2$
Applied dose equivalent range	7.8 - 9.9 mSv
Uncertainty (K=2)	6 %

2D-aSi flat panel image

radiation quality DV-90 (IEC RQR 7)

Setup number	6
Radiation quality	ROR 7
Average photon energy	47 keV
Angle of radiation incidence	0°
Source detector distance	2.5 m
Field size	43 cm diam.
Max. detector size on phantom	$15 \times 15 \text{ cm}^2$
Applied dose equivalent range	7.8 - 9.9 mSv
Uncertainty (k=2)	6 %

2D-aSi flat panel image measured field profiles

radiation quality DV-90 (IEC RQR 7)

Setup number	6
Radiation quality	ROR 7
Average photon energy	47 keV
Angle of radiation incidence	0°
Source detector distance	2.5 m
Field size	43 cm diam.
Max. detector size on phantom	15 x 15 cm ²
Applied dose equivalent range	7.8 - 9.9 mSv
Uncertainty (K=2)	6 %

MC simulated field in front of ISO slab phantom

radiation quality DV-90 (IEC RQR 7)

Setup number	6
Radiation quality	RQR 7
Average photon energy	47 Kov
Angle of radiation incidence	0°
Source detector distance	2.5 m
	43 cm diam.
Max. detector size on phantom	15 x 15 cm ²
Applied dose equivalent range	7.8 - 9.9 mSv
Uncertainty (k=2)	6 %

Irradiation planning 4 groups of dose values

Setup 6 RQR 7 (DV-90), 0°	Group1	Group2	Group3	Group4
planned date	22.05.	22.05.	23.05.	23.05.
planned persons	MK, CH	MK, CH	MK, CH	MK, CH
MG320 mode	000	000	000	000
kV	90,0	90,0	90,0	90,0
mA	5,80	5,80	5,80	5,80
filter	F4-10	F4-10	F4-10	F4-10
expected Monitor (100nF)	264	264	264	264
K _a -rate (mGy/h)	204	204	204	204
K _a (mGy) H _p (10)rate (mSv/h)	5,69	6,20	6,72	7,23
	362	362	362	362
proposed H _p (10) (mSv)	7,80	8,50	9,20	9,90
H _p (0,07)rate (mSv/h)	370	370	370	370
H _p (0,07) (mSv)	7,97	8,69	9,40	10,1
Distance (mm)	325/2500	325/2500	325/2500	325/2500
time (s)	77,6	84,6	91,6	98,5

Radiation qualities 12 conversion coefficients

$$H_{p}(d;Q,\alpha) = K_{a}(Q) (h_{pK}(d;Q,\alpha))_{lab}$$

$$h_{pK} = \frac{H_p}{K_a} = \int \frac{1}{K_a} \left(\frac{\mathrm{d}\Phi}{\mathrm{d}E} E \frac{\mu_{\mathrm{en}}}{\rho}\right)_a \left(h_{pK}(E)\right) dE$$

tabulated ISO 4037-3^(a) IEC 62387^(b)

tabulated ICRU-57/ICRP-74^(c)

radiation quality	average energy	1 st HVL	angle of radiation incidence	<i>h</i> ⊧к(10) (Sv/Gy)	h _р к(0.07) (Sv/ <u>Gy</u>)
S-Cs	662 keV	-	0 °	1.21 ^{a)}	1.21 ^{b)}
S-Co	1250 keV	-	0°	1.15 ^{a)}	1.17 ^{b)}
RQR 7	47 keV	3.3 mm Al	0°	1.37 ^{c)}	1.40 ^{c)}
W-80	57 keV	0.35 mm Cu	0°	1.77 ^{a)}	1.64 ^{a)}
W-80	57 keV	0.35 mm Cu	60°	1.39 ^{a)}	1.50 ^{a)}
W-150	104 keV	1.9 mm Cu	0°	1.77 ^{a)}	1.64 a)

Irradiation procedure for an irradiation setup

- ✓ Choose 2 to 4 dosemeters of a system (dosemeter numbers by chance)
- ✓ Sort systems according to planned sequence (4 groups)
- ✓ Check protocol (irradiation date, responsible, irradiation parameters)
- ✓ Check facility parameters, Monitor chamber and phantom positioning
- ✓ Check software parameters (Monitor reading)
- ✓ Verify setup by APD test irradiation
- Fill in Excel protocol (irradiation number, dosemeter numbers, time)
- Positioning according photo-documentation
- Take photo directly before irradiation (time-stamp of photo)
- ✤ Observe stable positioning of dosemeters by camera
- ✤ Mark dosemeter directly after irradiation (red dot ●)
- Separate irradiated dosemeters
- Finish Excel protocol (Monitor reading)

112 dosimetry systems Photo documentation

Photos of about half of the participating dosimetry systems (similar types and APDs were not shown due to limited space)

112 dosimetry systems2240 dosemeters irradiated

20 dosemeters per participating system

	kerma rate (mGy/h)	<i>H</i> ₀(10) range (mSv)	number of irradiated dosemeters
Setup number 1	25	0.9 – 1.1	2
Setup number 2	39	7.1 – 9.2	4
Setup number 3	304	7.9 – 10	2
Setup number 4	1640	71 – 92	2
Setup number 5	1640	413 – 499	2
Setup number 6	264	7.8 – 9.9	2
Setup number 7	115	7.6 – 9.7	2
Setup number 8	115	7.3 – 9.4	2
Setup number 9	115	7.4 – 9.5	2

27 wrong irradiated dosemeters

	S004-17
	S004-30
	S004-15
Spare dosemeters were used for:	S004-24
	S004-21
	S004-29
	S019-18
o front side/ rear side wrong	S024-05
18 decomptors	S024-29
10 uosemeters	S024-09
	S024-14
	S035-06
😣 dosemeter moved or dropped down	S035-17
- 1	S035-19
5 dosemeters	S035-27
	S039-06
	S039-07
	S039-14
o aosemeter maybe not irradiated	S039-22
1 deservators	S045-03
4 UUSellieleis	S045-28

Dosemeter dentification	Status
S004-17	wrong irradiated
S004-30	wrong irradiated
S004-15	wrong irradiated
S004-24	wrong irradiated
S004-21	wrong irradiated
S004-29	wrong irradiated
S019-18	wrong irradiated
S024-05	wrong irradiated
S024-29	wrong irradiated
S024-09	wrong irradiated
S024-14	wrong irradiated
S035-06	wrong irradiated
S035-17	wrong irradiated
S035-19	wrong irradiated
S035-27	wrong irradiated
S039-06	wrong irradiated
S039-07	wrong irradiated
S039-14	wrong irradiated
S039-22	wrong irradiated
S045-03	wrong irradiated
S045-28	wrong irradiated
S054-02	wrong irradiated
S054-25	wrong irradiated
S098-11	wrong irradiated
S098-23	wrong irradiated
S099-17	wrong irradiated
S099-23	wrong irradiated

