

戀

Public Health

England

Overview of the IC2017n Results

Marie-Anne Chevallier¹, Elena Fantuzzi², <u>Michael Hajek</u>³, Marlies Luszik-Bhadra⁴, Sabine Mayer⁵, Rick Tanner⁶, David Thomas⁷ & Filip Vanhavere⁸

¹Institut de Radioprotection et de Sûreté Nucléaire, Fontenay-aux-Roses, France
²Italian National Agency for New Technologies, Energy and Sustainable Economic Development, Bologna, Italy
³International Atomic Energy Agency, Vienna, Austria
⁴Physikalisch-Technische Bundesanstalt, Braunschweig, Germany
⁵Paul Scherrer Institut, Villigen, Switzerland
⁶Public Health England,
⁷National Physical Laboratory,
⁸SCK•CEN Belgian Nuclear Research Centre, Mol, Belgium

IC2017n Participants' Meeting, 12 February 2019, Łódź, Poland

Outline

- Reminder of radiation qualities and spectra
- Categories of dosemeters
- Overview of participants' results
- Results for specific radiation qualities

Reminder — **Radiation Qualities**

No.	Radiation quality	<i>H</i> _p (10) (mSv)		
1	Bare ²⁵² Cf source at 0°	0.3	1.5	12
2	Bare ²⁵² Cf & ¹³⁷ Cs sources at 0° [H_p (10) photons = 1 mSv]		1.5	
3	Bare ²⁵² Cf source at 45°		1.5	
4	D ₂ O-moderated ²⁵² Cf source at 0°		1.2	
5	D ₂ O-moderated ²⁵² Cf source behind shadow block		1.0	
6	Bare ²⁴¹ Am-Be at 0°		1.5	

EURADOS

EURADOS

Categories of Dosemeters

33 dosemeter systems from 32 individual monitoring services

18 track systems

- 7 etched track detectors for fast neutrons with thermal neutron TLD
- 7 etched track detectors for fast neutrons with thermal neutron converters
- 3 etched track detectors for fast neutrons without evidence of thermal sensor
- 1 fission track detector

15 albedo systems

- 10 TLD with boron-loaded shield
- 3 TLD with cadmium shield
- 1 OSLD
- 1 TLD lacking information on shielding against direct thermal neutrons

To ease identification OG reassigned dosemeters registered under types "other" or "combination"

Partial Repeat of Irradiations

- Possibility of unexpected photon exposure for some of the participants' dosemeters could not be excluded
- OG requested submission of photon doses evaluated for all dosemeters without correction/subtraction due to issuing period or transportation
- Photon doses reported were not included in certificates but helped OG resolve the issues
- As results might have been impacted, three systems were offered a repeat for part of the irradiations at no additional cost

Dosemeter Response

 $R = \frac{H_{\rm m}}{H_{\rm ref}}$

Irradiated dosemeters	924			
Reported values	924			
	R			
Arithmetic mean	1.18			
Median	1.02			
Standard deviation	1.23			
2.5 th -percentile	0.13			
97.5 th -percentile	4.52			

 H_m ... measured $H_p(10)$ as provided by IMS

 H_{ref} ... reference $H_p(10)$ as determined by irradiating laboratory

Distribution of Response

Mean and Standard Deviation of Response

Padiation quality	H _p (10)	A	All		Albedo		Track	
	(mSv)	Mean	σ	Mean	σ	Mean	σ	
	0.3	1.47	2.52	1.06	0.78	1.82	3.31	
Bare 252 Cf at 0°	1.5	1.11	0.63	0.99	0.40	1.21	0.75	
	12	1.05	0.46	0.95	0.42	1.13	0.48	
Bare ^{252}Cf & ^{137}Cs at 0°	1.5	1.07	0.45	0.94	0.40	1.17	0.47	
Bare ²⁵² Cf at 45°	1.5	0.86	0.59	0.88	0.34	0.85	0.74	
D_2O -mod. ²⁵² Cf at 0°	1.2	1.08	1.94	1.04	0.23	1.11	0.50	
D ₂ O-mod. ²⁵² Cf behind SB	1.0	2.19	1.94	3.22	1.96	1.33	1.47	
Bare $^{241}Am\mathchar`Be at 0^\circ$	1.5	0.94	0.78	0.70	0.32	1.14	0.97	

Summary of Reported Responses

Conclusions

- Applying approval criterion and performance limits of ISO 14146:2018, 9 (out of 15) albedo and 12 (out of 18) track systems passed with not more than two outliers
- Overresponse of albedo systems for D₂O-moderated ²⁵²Cf source behind shadow block due to nearly isotropic distribution and very soft field
 - Some albedo systems responded within performance limits because of improved side shielding or correction based on ratio of readings behind front and albedo window
- Track detectors tend to underestimate low-energy neutrons at high angles of incidence

Please let us know your suggestions or claims by e-mail to coordinator@ic2017n.org

