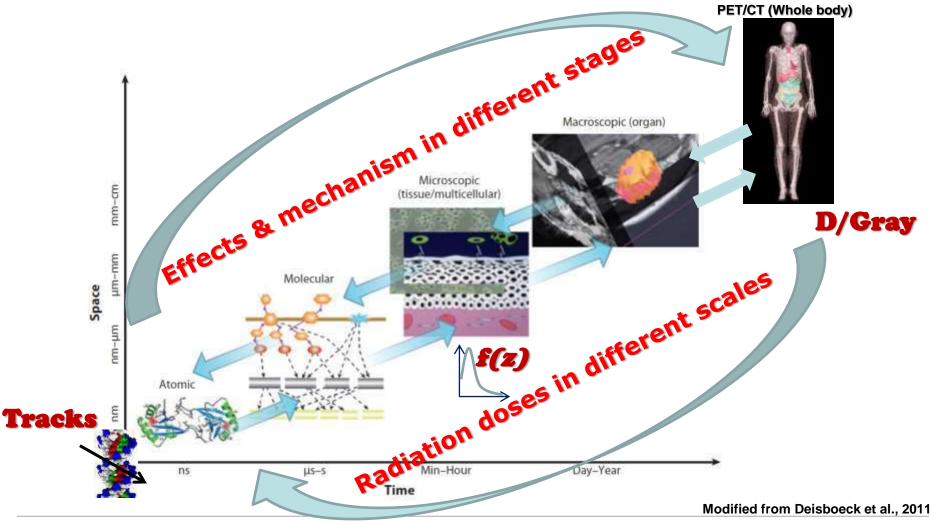


Microdosimetry and nanodosimetry for internal emitters – changing the scale


Weibo Li

Institute of Radiation Protection Helmholtz Zentrum München, Neuherberg, Germany

EURADOS Winter School, 02/03/2017, Karlsruhe

Motivation and Innovation Multistage mechanism needs Multiscale dosimetry

Microdosimetry and nanodosimetry in EURADOS

- 1982, EURADOS establishe Working Group 1 – Applica principle in radiation protect
- Radiation Protection
 Oosimetry
- Workshop on Microdosime protection, 1984
- MICRODOSIMETRIC COUNTERS IN RADIATION PROTECTION
- EURADOS 6th Winter Scho Perspectives of Computation Nanodosimetry (AM2013):

Proceedings of a Workshop held at Homburg/Saar (FRG) May 15th - 17th 1984

Davidkova - Introduction to mic

Organised by:
Commission of the European Community
European Radiation Dosimetry Group
Universität des Saarlands/Saar

Grosswendt - Introduction to n

Proceedings Editors:
J. BOOZ, CEC
A. A. EDWARDS, NRPB (UK)
K. G. HARRISON, AERE (UK)

- Villagrasa Micro- and nanodo: DNA Monte Carlo code
- Hofmann Alpha particle micro
- Bordage Microdosimetry of A

Overview

- Radiation dosimetry
 - Roentgen, r
 - Absorbed dose, D
 - Linear energy transfer, LET
- Microdosimetry for cellular biological effects
 - Cellular effects cannot be explained by absorbed dose
 - Lineal energy and specific energy
 - Proximity function
 - Compound Poisson process
- Nanodosimetry for molecular radiation mechanism
 - Tracks and initial events lead to molecular damages
 - Radiation track structure theory
 - Physical tool for molecular mechanism of radiation effects
- Internal micro- and nanodosimetry
 - Cellular dosimetry of targeted radionuclides
 - Microdosimetry of radon progeny
 - Dose–response relationship
- Future development

Radiation dosimetry

- 1895 Wilhelm Röntgen discovered X-rays
- 1896 Dermetitis and damages to hands
- 1902 Skin cancer
- 1925 Measurement of X-rays by free-air chamber
- 1928 ICRU established a unit "roentgen" for that "quantity" which was measured by free-air chamber
- 1953 ICRU established "absorbed dose"
- 1956 ICRU used the unit "roentgen" for established "exposure dose" and later "exposure" (ICRU 1962), now the SI unit "C kg⁻¹"
- 1538 Paracelsus "Dosis sola facit venenum" the dose makes the poison – Rühm, 2016 in Rösch ed. Nuclear- and Radiochemistry Vo.II
- Radiation Dosimetry deals with the measurement of absorbed dose / dose rate resulting from the interaction of ionizing radiation with matters

Absorbed dose

The absorbed dose, D, is the quotient of $d\bar{\epsilon}$ by dm, where $d\bar{\epsilon}$ is the mean energy imparted by ionizing radiation to matter of mass dm, thus

$$D=\frac{\mathrm{d}\bar{\varepsilon}}{\mathrm{d}m}.$$

Unit: J kg⁻¹ (special name is gray: Gy)

Note: The absorbed dose, *D*, is considered a point quantity, but it should be recognized that the physical process does not allow d*m* to approach zero in the mathematical sense.

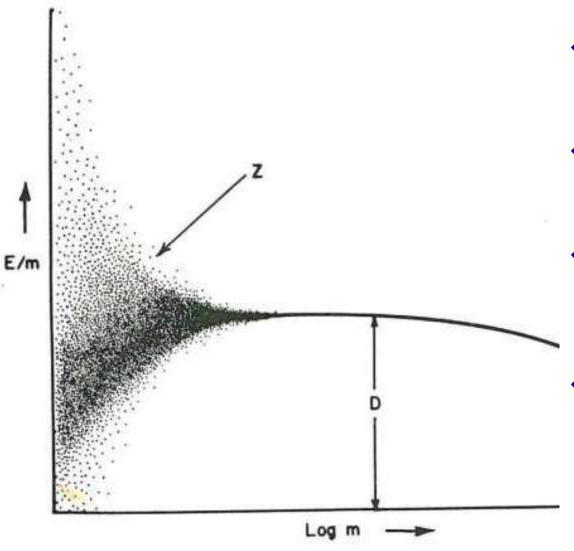
The <u>energy imparted</u>, ε , to the matter in a given volume is the sum of all energy deposits in the volume, thus

$$\varepsilon = \sum_{i} \varepsilon_{i}$$
,

where the summation is performed over all energy deposits, ε_i , in that volume.

Unit: J

The <u>energy deposit</u>, ε_i , is the energy deposited in a single interaction, i, thus


$$\varepsilon_i = \varepsilon_{\rm in} - \varepsilon_{\rm out} + Q$$
,

where $\varepsilon_{\rm in}$ is the energy of the incident ionizing particle (excluding rest energy), $\varepsilon_{\rm out}$ is the sum of the energies of all charged and uncharged ionizing particles leaving the interaction (excluding rest energy), and Q is the change in the rest energies of the nucleus and of all elementary particles involved in the interaction (Q > 0: decrease of rest energy; Q < 0: increase of rest energy).

Unit: J

ICRU 85a, 2011

Absorbed dose and limitations

- Absorbed dose is a statistic average quantity and disregarded the random fluctuations
- However, the biological effects are related to the energy deposit and event in cellular region
- If the volume under investigation becomes smaller, the absorbed dose becomes fluctuant or random
- Absorbed dose is still used as basic quantity for other derived dosimetric quantities in radiation protection and medicine

Rossi, 1968

Microdosimetric quantities and distributions

- Stochastic quantities y and z for microscopic distribution of energy deposition
- The *lineal energy*, y, is the quotient of ε_S by \bar{l} , where ε_S is the energy imparted by ionizing radiation to the matter in a given volume by a <u>single energy-deposition event</u>, and \bar{l} is the mean chard length of that volume, thus

$$y=\frac{\varepsilon_{S}}{\bar{l}}$$
.

Unit: J m⁻¹ (keV µm⁻¹, this makes you recall LET)

The specific energy (imparted) z, is the quotient of ε by m, where ε is the energy imparted by ionizing radiation to the matter in a volume of mass m, thus

$$z=\frac{\varepsilon}{m}$$
.

Unit: J kg⁻¹, special name is gray (Gy)

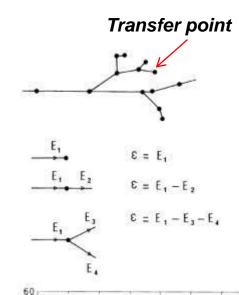
- In practice, the probability density of y and z, i.e. f(y) and f(z) are measured and calculated
- For convex volumes, $y = \frac{\rho A}{4}z$, with A the surface area and ρ density

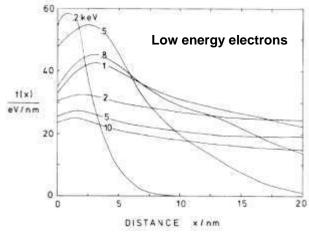
ICRU 36, 1983; Kellerer, 1985; Rossi and Zaider, 1996

Microdosimetric quantities and distributions

\rightarrow Proximity function T(x) and t(x)

Integral proximity function T(x) is defined as:


$$T(x) = \lim_{n \to \infty} \frac{1}{n} \sum_{j=1}^{n} \widetilde{T}_{j}(x)$$


$$\widetilde{T}_j(x) = \sum_i \sum_k \varepsilon_i \varepsilon_k / \sum_i \varepsilon_i$$

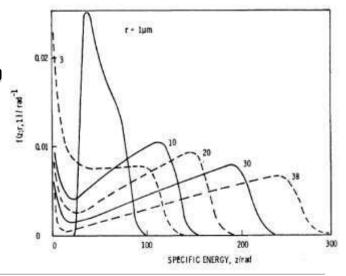
The differential proximity function t(x) is the derivative of T(x)

$$T(x) = \int_0^x t(x')dx'$$

- T(x) can be also named as point-pair distance distributions, of the geometric objects T and S
- t(x) can be understood as distance distribution of energy transfers multiplied by total energy of the tracks

ICRU 36, 1983; Kellerer, 1985; Chmelevsky et al. 1980

Central issues in microdosimetry


Compound Poisson process

$$f(z; D) = \sum_{\nu=0}^{\infty} e^{-n} \frac{n^{\nu}}{\nu!} f_{\nu}(z), \quad \text{with} \quad n = \frac{D}{\overline{z}_{F}}$$

$$f_{\nu}(z) = \int_{0}^{z} f_{1}(x) f_{\nu-1}(z - x) dx \quad (\nu = 2, 3, ...)$$

Single-event distribution calculation

- Measurement
- Energy-loss straggling
- Monte Carlo track structure calculation

Microdosimetry for internal emitters

William Carl Roesch explicitly highlighted a treatise on Internal Microdosimetry

SIXTH SYMPOSIUM ON MICRODOSIMETRY

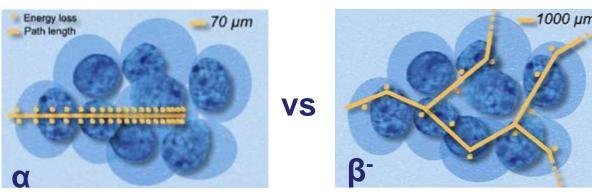
Brussels, Belgium, May 22-26, 1978

Edited by J. Booz and H. G. Ebert 1213

INTERNAL MICRODOSIMETRY*

W. C. Roesch

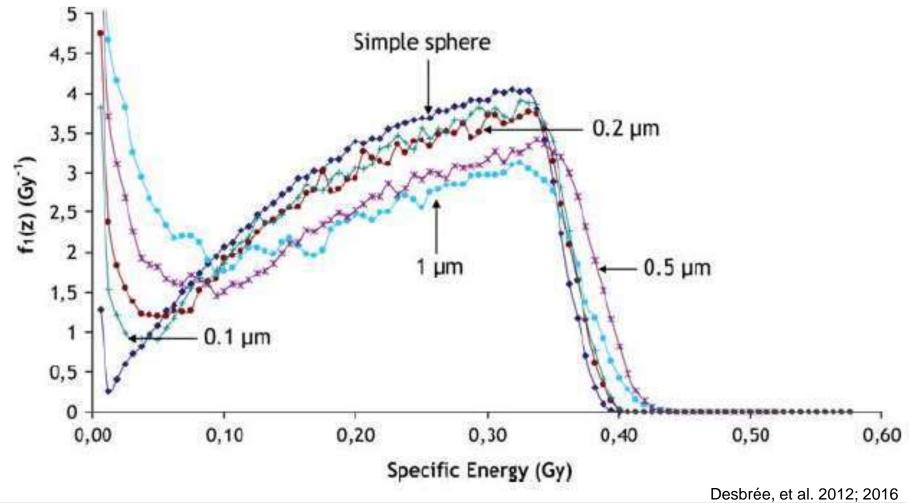
Battelle Pacific Northwest Laboratories Richland, Washington 99352 U.S.A.


- Applications of microdosimetry in internal dosimetry
 - Inhomogeneous distributions of radionuclides in cells
 - Determination of f₁(z;D)
 - Calculating f(z;D) through Compound Poisson process
- Microdosimetric biokinetic modelling

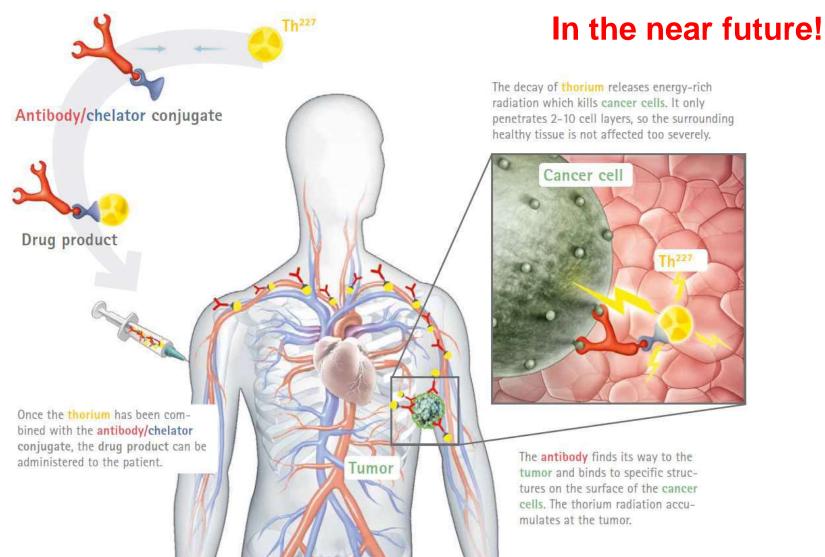
Roesch, 1977; Roesch, 1978

Microdosimetry of targeted radionuclides

Advantages of a particles

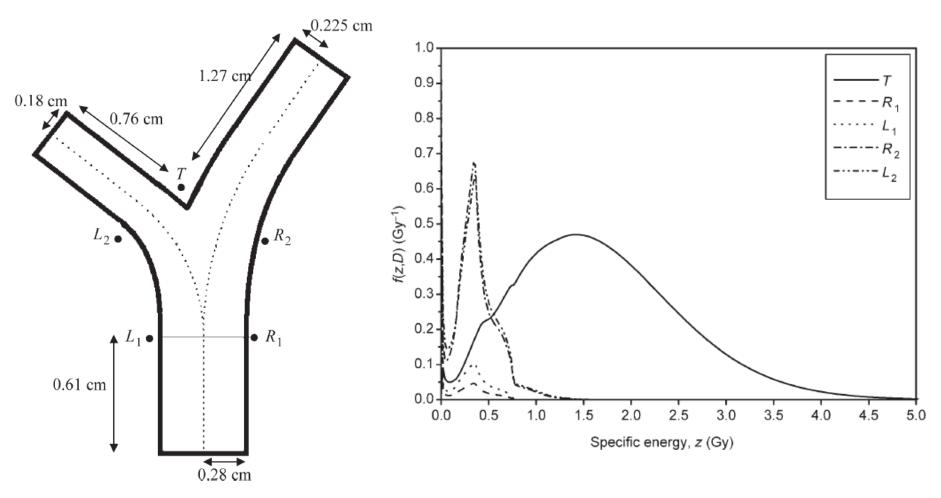

- Short range: 50 80 μm
- High LET: ~100 keV/μm vs 0,2 keV/μm for β- particles
- Principalist sectoroxities the represent of the restated backteristics.
 - Bone metastases after a breast cancer, a kidney cancer ...
- Emergence of alphatherapy
 - Astatine-211 (²¹¹At), Bismuth-212 (²¹²Bi), Bismuth-213 (²¹³Bi), Actinium-225 (²²⁵Ac), Lead-212 (²¹²Pb), Thorium-227 (²²⁷Th), ...

Desbrée, et al. 2016



Xofigo® (223RaCl₂)

Microdosimetry of ²²⁷Th targeted radiopharmaceutical


http://www.research.bayer.com

Microdosimetry of inhaled radon progeny

Radiation Protection Dosimetry (2007), Vol. 127, No. 1 4, pp. 40 45 Advance Access publication 6 September 2007

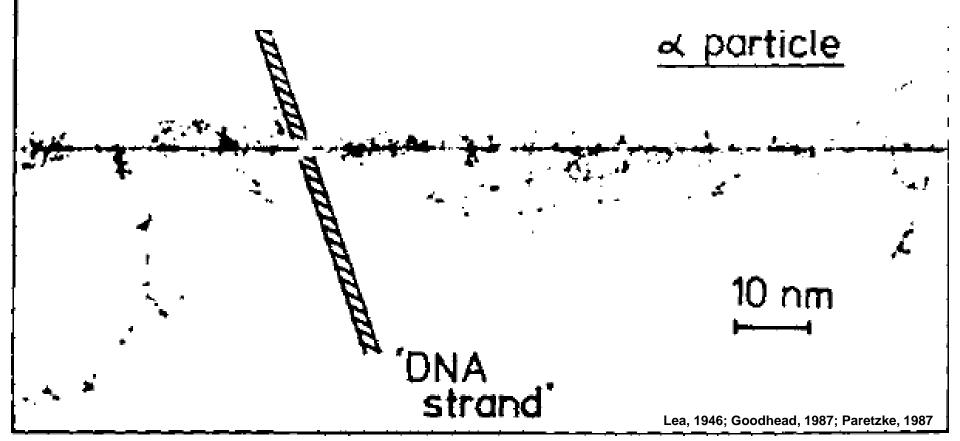
doi:10.1093/rpd/ncm414

Hofmann et al., 2007

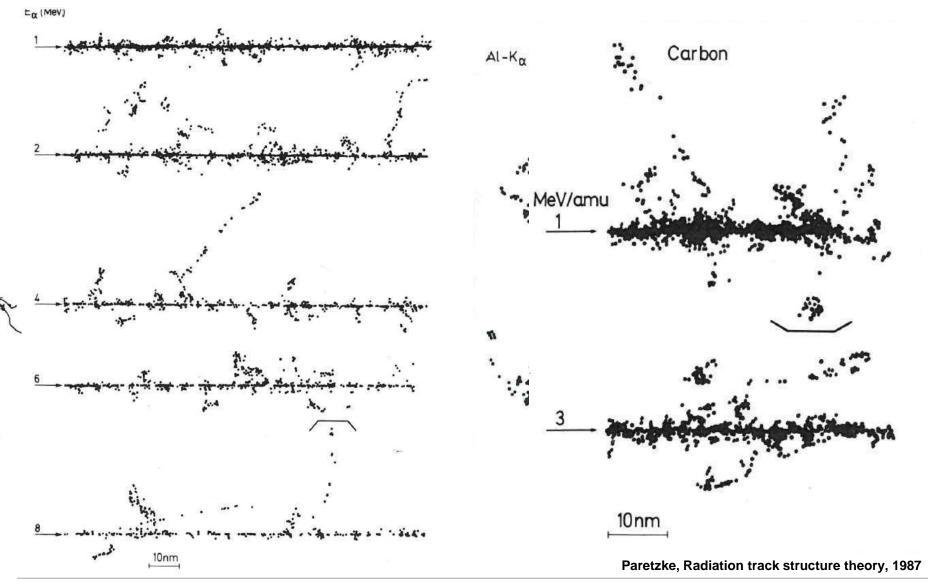
Relationship - y and z to LET and D

- LET and y
 - LET is based on cut energy
 - y is based on a small volume
 - A cut energy is limited to a volume
- Absorbed dose, D and z

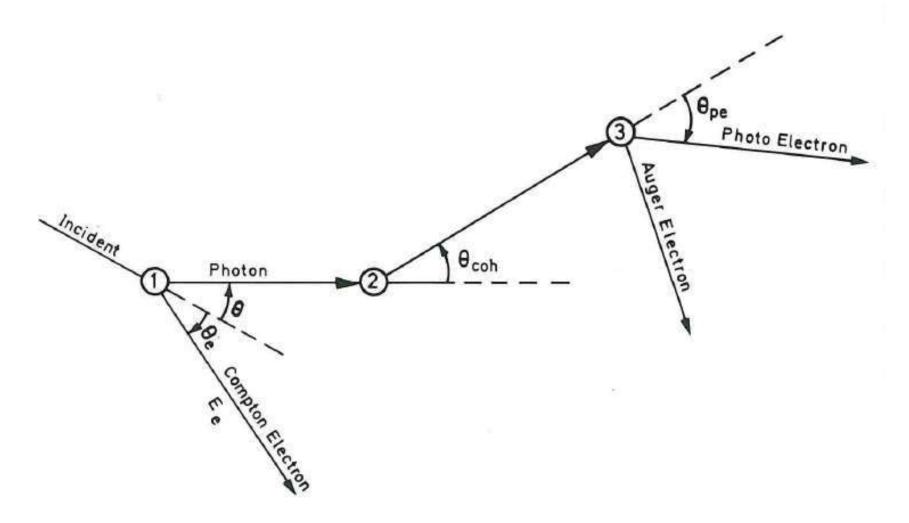
$$\overline{z} = \int_0^\infty z f(z; D) dz = D$$


Radiation quality Q based on y

$$Q = \int Q(y)yf(y)dy/\overline{y}_F$$


Limitations of microdosimetric quantities

Simulation of DNA damage and chromosome aberration needs track structure and atomic structure of cell nuclei model



Track structure calculations -> Nanodosimetry

Interactions of radiation with matters

Bethe, 1930; Inokuti, 1971; Paretzke, 1987

Cross sections in nanodosimetry

- Cross sections for track structure calculation need the full knowledge of interaction of radiation with matter, especially biological material at low energy ranges:
 - Low-energy electrons in vapor water Paretzke, 88'
 - Low-energy electrons in liquid water Dingfelder, 98'
 - Low-energy electrons in DNA moiety Bernhardt, 03'
 - Alpha-particles
 - Protons
 - Heavy ions
 - ✓ For a full discussion, refer to PENELOPE-2014 GEANT4 v10.3 Physics Reference Manual

Bethe, 1930; Paretzke, 1988; Dingfelder et al., 1998; Bernhardt and Paretzke, 2003 PENELOPE-2014; GEANT4 v10.3 Physics Reference Manual

Programs for track structure calculations

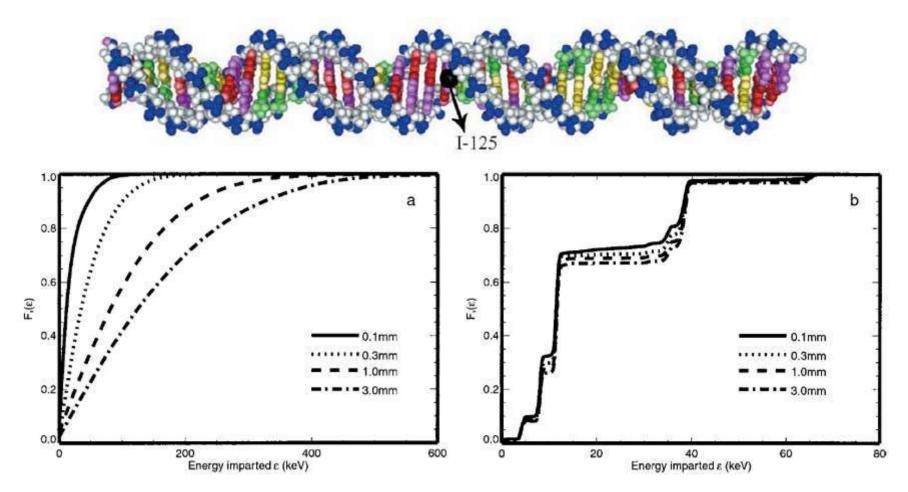
PARTRAC

- Developed based on MOCA code series
- Especially used for low-energy electrons
- Full simulations of molecular damage to cellular effects

PENELOPE

Especially for low photons and electrons, 50 eV

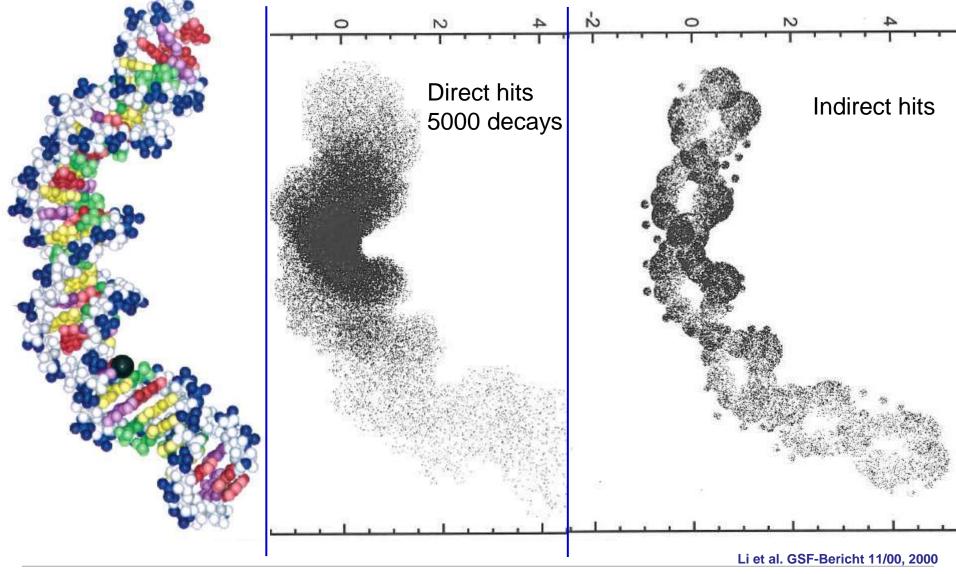
GEANT4-DNA


- Based on GEANT4
- Used for any radiation type
- Especially for very low energy of electrons
- Integrating chemical and biological modules

Other codes

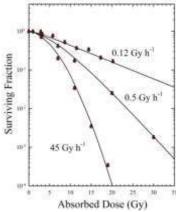
- MCNP6 (Los Alamos Natl. Lab.)
- NASIC (Tsinghua Uni., Beijing)

Nanodosimetry – targeted radionulcides for molecular therapy

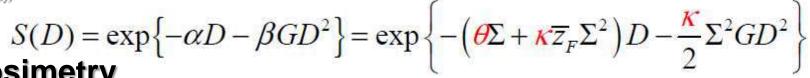


Li et al. 2001, 2004, Friedland et al. 2001

Track structures – I-125 targeted molecular therapy



HelmholtzZentrum münchen
German Research Center for Environmental Health

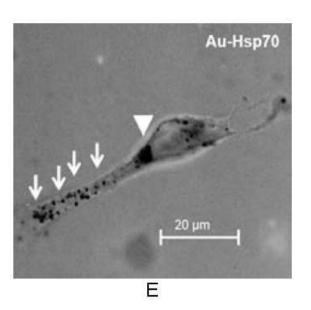


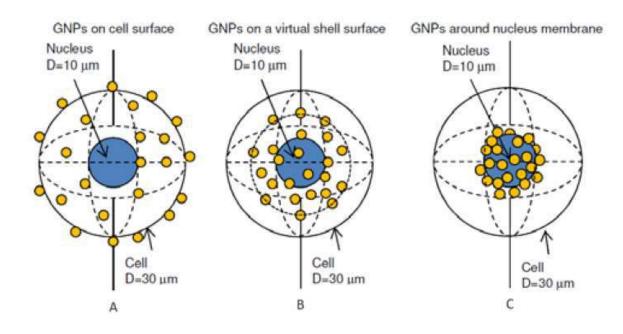
Relationship of D, f(z) and tracks

Absorbed dose

Microdosimetry

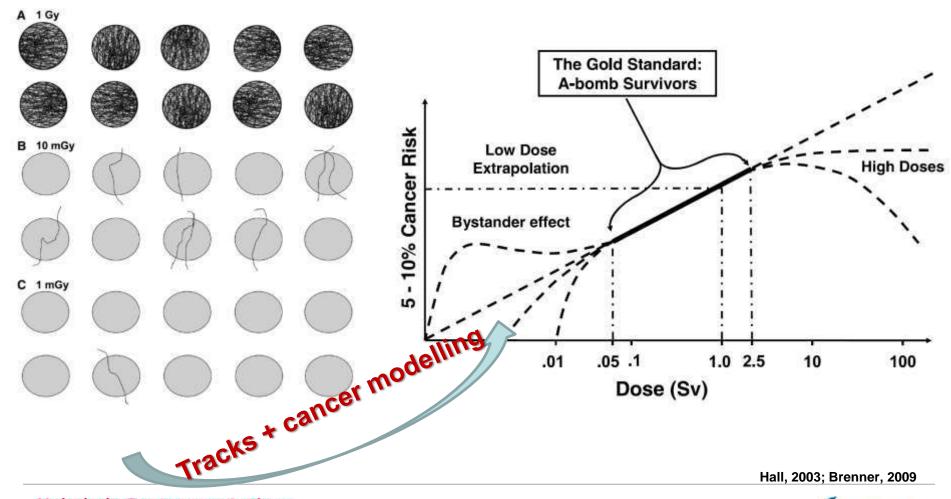
netry
$$\bar{z}_D = \int z \, d_1(z) \, dz = \int z^2 f_1(z) \, dz/\bar{z}_F = \overline{z_F^2}/\bar{z}_F$$




Future development

- Validating and improving cross sections in DNA moiety and other materials for low energy radiation experimentally and theoretically
- Strengthen applications of internal micro- and nanodosimetry in nuclear medicine and molecular targeted radiotherapy, radiation protection as well
- Contributions to reveal the dose-response relationship for low and very low dose, fit to CONCERT Calls
- EURADOS nanodosimetry comparisons
 - I-125 decays Uncertainty of cross sections
 - Gold nanoparticles molecular targeted radiotherapy

Nanodosimetry – gold nanoparticle targeted for preclinical cancer radiotherapy



Multhoff /TUM and Li/HMGU, 2016

Nanodosimetry – A tool for interpreting the dose-response of internal emitters

Acknowledgments

- EURADOS
- Herwig G. Paretzke, Munich
- Albrecht M. Kellerer, Munich
- Harald H. Rossi, †
- Werner Friedland, Helmholtz Zentrum München
- Michael Dingfelder, East Carolina University
- Imre Balásházy, Marion Bug, Nora Hocine, Werner Hofmann, Maria A. Lopez, Hans Rabus, Carmen Villagrasa and Werner Rühm from EURADOS
- Professor Junli Li, Tsinghua University, Beijing

